Category: Sách/Chương sách

  • Stem Cell Therapy for Islet Regeneration

    Stem Cells in Clinic and Research

    Book edited by Ali Gholamrezanezhad

    ISBN 978-953-307-797-0, Hard cover, 804 pages

    Published: August 23, 2011 under CC BY-NC-SA 3.0 license.

    Chapter 22: Stem Cell Therapy for Islet Regeneration

     By Phuc Pham Van
    DOI: 10.5772/17588

    Based on our current understanding of cell biology and strong supporting evidence from previous experiences, different types of human stem cell populations are capable of undergoing differentiation or trans-differentiation into functionally and biologically active cells for use in therapeutic purposes. So far, progress regarding the use of both in vitro and in vivo regenerative medicine models already offers hope for the application of different types of stem cells as a powerful new therapeutic option to treat different diseases that were previously considered to be untreatable. Remarkable achievements in cell biology resulting in the isolation and characterization of various stem cells and progenitor cells has increased the expectation for the development of a new approach to the treatment of genetic and developmental human diseases. Due to the fact that currently stem cells and umbilical cord banks are so strictly defined and available, it seems that this mission is investigationally more practical than in the past. On the other hand, studies performed on stem cells, targeting their conversion into functionally mature tissue, are not necessarily seeking to result in the clinical application of the differentiated cells; In fact, still one of the important goals of these studies is to get acquainted with the natural process of development of mature cells from their immature progenitors during the embryonic period onwards, which can produce valuable results as knowledge of the developmental processes during embryogenesis. For example, the cellular and molecular mechanisms leading to mature and adult cells developmental abnormalities are relatively unknown. This lack of understanding stems from the lack of a good model system to study cell development and differentiation. Hence, the knowledge reached through these studies can prove to be a breakthrough in preventing developmental disorders. Meanwhile, many researchers conduct these studies to understand the molecular and cellular basis of cancer development. The fact that cancer is one of the leading causes of death throughout the world, highlights the importance of these researches in the fields of biology and medicine.

    Introduction

    Diabetes mellitus is an endocrine disorder characterised by inadequate production or use of insulin, resulting in abnormally high blood glucose levels. High blood glucose leads to the formation of reactive advanced glycation end-products (Feldman et al., 1997), which are responsible for complications such as blindness, kidney failure, cardiovascular disease, stroke, neuropathy and vascular dysfunction. Diabetes mellitus is classified as either type 1 or type 2. Type 1 diabetes mellitus (insulin-dependent diabetes mellitus) results from the autoimmune destruction of the pancreatic beta cells, whereas type 2 diabetes mellitus (non-insulin-dependent diabetes mellitus) results from insulin resistance and impaired glucose tolerance.

    Approximately 7.8% (23.6 million people) of the US population has been diagnosed with diabetes mellitus, and another 57 million people are likely to develop diabetes mellitus in the coming years (American Diabetes Association, 2007). The number of people with diabetes mellitus is set to continue to rapidly increase between now and 2030, especially in developing countries.

    Over the last decade, a new form of treatment called islet transplantation therapy was thought to provide good patient outcomes; however, few islets are available for transplantation. Typically, the pooled islets isolated from two pancreases are enough to treat a single patient. Since the enormous potential of stem cells was discovered, it was hoped that they would provide the most effective treatment for diabetes mellitus. Over the past two decades, hundreds of studies have looked at the potential of stem cell therapy for treating diabetes mellitus. Successful stem cell therapy would eliminate the cause of the disease and lead to stable, long-term results; hence, the term “pancreatic regeneration” was coined. The hypothesis was that stem cells could regenerate the damaged pancreas. After careful consideration of the aetiology of diabetes mellitus, scientists have put forward two general treatment strategies: stem cell therapy to treat the autoimmune aspect of the disease, and stem cell therapy to treat the degenerative aspect of the disease. In this review, we focus on stem cell-based therapies aimed at islet regeneration through stem cell or insulin-producing cell (IPC) transplantation. We will also discuss the latest strategies for treating both type 1 and type 2 diabetes mellitus using stem cell therapy, along with the (initially promising) results.

  • Improving the Efficacy of Diabetes Mellitus Treatment by Combining Cell Replacement Therapy with Immune Correction

    Chapter

    Stem Cells and Cancer Stem Cells, Volume 4

    Volume 4 of the series Stem Cells and Cancer Stem Cells pp 113-124

    Date:
     
    Stem Cells and Cancer Stem Cells

    Improving the Efficacy of Diabetes Mellitus Treatment by Combining Cell Replacement Therapy with Immune Correction

    • Pham Van Phuc
    • Phan Kim Ngoc

    Abstract

    Type 1 diabetes mellitus is an autoimmune disease in which the islet β-cells are damaged and unable to produce insulin. Both insulin injection and pancreas/islet grafts offer highly efficient treatments, but they also have many limitations. Stem cell therapy has the potential to overcome these limitations and may offer the best outcomes for treating diabetes mellitus. Based on the pathophysiology of diabetes mellitus, stem cell therapy targets two mechanisms, namely cell replacement and immune correction. The aim of this series of studies was to evaluate the efficiency of diabetic treatment by combining cell replacement therapy with immune correction therapy. Mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) were derived from syngenic mouse bone marrow. Diabetic mice were created by injection of streptozotocin. Diabetic mice were transplanted with HSCs and insulin-producing cells (IPCs) via the tail vein after destroying the bone marrow. The results showed that transplantation of both IPCs and HSCs elicited greater improvements in body weight, blood glucose level and survival time than did transplantation of HSCs or IPCs alone. These findings provide hope for a new strategy that can improve the outcomes of stem cell-based therapy for diabetes in humans.

    Keywords

    Cell replacement therapy Diabetes mellitus Hematopoietic stem cells • Immune correction Mesenchymal stem cell Stem cell therapy

     

    Link:

    http://www.springer.com/biomed/cancer/book/978-94-007-2827-1

    I. Molecular genetic.-1 Neural stem/progenitor cell proliferation and differentiation: role of sonic hedgehog and wingless/int-1 proteins.-2 Sensitivity of hematopoietic and leukemic stem cells to hoxa gene levels.-3. Maintenance of neural stem cells in the brain: role of notch signaling.-4 Maintenance of hematopoiesis: role of early b cell factor 2 matthias kieslinger.-5 Differentiation of periodontal stem/progenitor cells: roles of tgf-β1.-6 Induced pluripotent stem cells from human extra-embryonic amnion cells: role of dna methylation in mainting stemness.-7 Smooth muscle cell differentiation from embryonic stem cells: role of hdac7 and pdgf-bb.-8 Adult neural stem cells; identity and regulation. II. Regenerative Medicine.-9 Tendon injury: role of differentiation of aduilt and embryonic derived stem cells.-10 The potential of stem cells and tissue engineered scaffolds for repair of the central nervous system.-11 Improving the efficacy of diabetes mellitus treatment by combining cell replacement therapy with immune correction.-12 Induced pluripotent stem cell production  and characterization: an overview of somatic cell reprogramming.-13 Proliferation of bone marrow-derived human mesenchymal stem cells: role of enamel matrix proteins.-14 Pluripotent cell-derived glial precursor cells for the delivery of therapeutic proteins to the central nervous system.-15 Cellularized scaffolds: new clothes for cardiac regenerative medicine.-16 Microencapsulation procedures for the immunoisolation of wharton’s jelly mesenchymal stem cells: a review. III Therapy.-17 Human hair follical stem cells: markers, selection and perspective clinic application.-18 Adipose-derived stem cells: therapy through paracrine actions.-19 Mesenchymal stem cell-natural killer cell interactions.-20 Malignant gliomas: treatment using genetically-modified neural stem cells.-21 The cancer stem cell hypothesis and its impact on the design of new cancer therapies.-22 Breast cancer stem cell: translating to the clinic.-23 Enhanced growth and metastasis of colon cancer: role of mesenchymal stem cells.-24 Proteomic characterization of mesenchymal stem cell-like populations derived from various tissue types. IV Transplantations.-25 Severe combined immunodefieciency patients: immune recovery after stem cell transplantation.-26 Transplanted mesenchymal stem cells aid the injured brain through trophic support mechanisms.Index.

    Get it at:

    amazon